
Parallelized Training of Deep NN – Comparison of Current
Concepts and Frameworks

Sebastian Jäger
inovex GmbH

76131 Karlsruhe, Germany
sebastian.jaeger@inovex.de

Hans-Peter Zorn
inovex GmbH

76131 Karlsruhe, Germany
hans-peter.zorn@inovex.de

Stefan Igel
inovex GmbH

76131 Karlsruhe, Germany
stefan.igel@inovex.de

Christian Zirpins
Karlsruhe University of Applied Sciences

76133 Karlsruhe, Germany
christian.zirpins@hs-karlsruhe.de

ABSTRACT
Horizontal scalability is a major facilitator of recent advances in
deep learning. Common deep learning frameworks offer different
approaches for scaling the training process. We operationalize the
execution of distributed training using Kubernetes and helm tem-
plates. This way we lay ground for a systematic comparison of deep
learning frameworks. For two of them, TensorFlow and MXNet we
examine their properties with regard to throughput, scalability and
practical ease of use.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Distributed
algorithms; • Information systems→ Computing platforms;

KEYWORDS
Deep Learning Frameworks, Deep Neural Networks, Distributed
Parallelized Training, Kubernetes

ACM Reference Format:
Sebastian Jäger, Hans-Peter Zorn, Stefan Igel, and Christian Zirpins. 2018.
Parallelized Training of Deep NN – Comparison of Current Concepts and
Frameworks. In Second Workshop on Distributed Infrastructures for Deep
Learning (DIDL ’18), December 10–11, 2018, Rennes, France. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3286490.3286561

1 INTRODUCTION
Deep learning (DL) methods provide solutions for a number of
difficult problems like image or speech recognition and are there-
fore being utilized in a growing number of individual application
systems. Optimizing respective deep neural networks (DNN) re-
quires timely data analysis for individual models with low update
latency while facing an increasing size of models and training data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DIDL ’18, December 10–11, 2018, Rennes, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6119-4/18/12. . . $15.00
https://doi.org/10.1145/3286490.3286561

A common way to achieve this in a scalable way is to distribute
and parallelize the training process.

To ease implementation, specific frameworks have emerged as
specialized middleware for DL applications. DL frameworks are
available in many varieties differing, e.g., in supported DL methods,
technology platform/stack and vendor/ecosystem. As explained
above, the ability of DL frameworks to parallelize and distribute
training of DNN is crucial and practitioners need to assess their
ability to scale appropriately.

Accordingly, we study the performance of two DL frameworks,
TensorFlow1 and MXNet2, with respect to parallelized and dis-
tributed training of convolutional (CNN) and recurrent (RNN) neu-
ral networks. A particular goal is to examine these frameworks
in a common and easily accessible setting that makes our results
applicable to a wide range of practitioners.

To this end, we utilize a state-of-the-art cloud infrastructure and
technology stack based on Kubernetes3 and the Helm4 package
manager. Herein, we evaluate the horizontal scalability of data
parallelism mechanisms for multi-machine setups with CPU-based
training.

As part of our contribution we survey the features of DL frame-
works with respect to parallelized DNN training and discuss related
performance studies. Furthermore, we present the results of our
own performance and scalability benchmarks and discuss practical
experiences that we have gained with the parallelization mecha-
nisms of two popular DL frameworks. Thus, our work can support
practitioners to take decisions in the design process of DL infras-
tructure based on widely accessible cloud platforms.

The rest of the paper is structured as follows. Section 2 gives an
overview of background concepts for parallelizing the training of
DNNs. Section 3 introduces principles of DL frameworks focusing
on distributed training and illustrates them bymeans of TensorFlow
and MXNet. Section 4 presents our experimental study on perfor-
mance and scalability of distributed training with TensorFlow and
MXNet on a Kubernetes cloud platform. Finally, section 5 discusses
related work and section 6 concludes.

1https://www.tensorflow.org
2https://mxnet.apache.org
3https://kubernetes.io
4https://helm.sh

https://doi.org/10.1145/3286490.3286561
https://doi.org/10.1145/3286490.3286561
https://www.tensorflow.org
https://mxnet.apache.org
https://kubernetes.io
https://helm.sh

DIDL ’18, December 10–11, 2018, Rennes, France Jäger et al.

2 CONCEPTS OF DISTRIBUTED TRAINING
Deep neural networks consist of thousands to million parameters
and require a significant amount of data to learn these parameters.
The training is a computationally intensive and time-consuming
process. The most important way to accelerate the training is to
parallelize and distribute computation across multiple devices and
machines. In this section, we describe the principles and concepts
of different distributed training methods.

2.1 Model Parallelism
The idea of model parallelism is to split the model across different
processing units and use the same data for each part of the model.
The main advantage is the possibility to train extremely large mod-
els which would not fit into the memory of one device. However,
the efficiency of model parallelism depends heavily on the architec-
ture and way the model is split. Figure 1 shows different examples.
As on the left side of figure 1 is shown, there is no good way to
use model parallelism for fully connected neural networks. If the
model is split horizontally, the device which computes layer two
has to wait for the messages with layer ones’ activations. Therefore
it is not possible that both devices can work in parallel. Vertical
splitting is better, as the parts can work in parallel. An evaluation
of the partitioning and scheduling problem is done by [9].

Cell

Cell

Cell

Cell 1 2 3 4

2

3

43

4

4

Figure 1: Splitting possibilities of a fully connected NN (top)
and a RNN (bottom) for model parallelism.

On the contrary to this, partially connected networks like convo-
lutional neural networks (CNN) can be split in away that potentially
speeds up the training time, given by their architecture.
Also, because recurrent neural networks (RNN) will unfold through
time for training to eliminate their cycled structure, shown on the
right side of figure 1, it is possible to train horizontally split RNNs
efficiently. The computation of complex layers in parallel often
outweighs the communication penalty.

2.2 Data Parallelism
Data parallel algorithms, in general, uses multiple workers which
process on a subset of the whole data set to scale computation [5].
For deep learning, the NN is replicated on each device and run the
same training steps with different data in parallel. If the neural
network fits into memory, there are two different advantages over
model parallelism. It is

(1) independent of network architecture and has the
(2) possibility to hide communication costs.

loss

gradients
mean

loss

gradients

loss

gradients

batch 1 batch 2 batch 3

parameters

update

Figure 2: Example of data parallel training.

Figure 2 shows the basic functionality of training with data paral-
lelism. One or more nodes, the parameter server (PS), is responsible
for calculating the parameter updates and, if requested, redistribute
them [7]. The updating step can be done in basically two different
ways synchronous and asynchronous, which has a high impact on
training performance.

Synchronous updates: The PS waits for all messages from
workers before computing parameter updates.

Asynchronous updates: For each received message the PS
computes parameter updates.

Both ways have different advantages and disadvantages. The
risk of PS bandwidth saturation is higher for synchronous updates
because the gradient updates are sent and received almost at the
same time. Another issue is the de facto implemented barrier, where
all workers synchronize and have to wait for the slowest. As a result,
synchronous training usually achieves a lower throughput. [2]

In contrast, because there is no waiting time, training with asyn-
chronous updates can achieve higher throughput. However, com-
puted gradients could be outdated because while a worker computes
gradients the PS updated model parameters. These are called stale
gradients and can hurt training performance regarding training
speed or possible accuracy. [2]

3 COMPARISON OF FRAMEWORKS
In the past decade, a lot of different deep learning frameworks have
emerged. Most of them were developed by companies and released
later under an open source license. Others have scientific origins
and were developed by universities. In this section, we give an
overview of different distinguishing properties of deep learning
frameworks and describe TensorFlow and MXNet in more detail.

3.1 Static and Dynamic Graphs
Differences between static and dynamic Frameworks include the
way how they implement networks. Static frameworks, like Ten-
sorFlow [1], are using two phases; the construction phase and the
execution phase. In the construction phase the computation graph
is created exclusively and will only be run in the execution phase.
This approach has the advantage that the operations could be more
optimized, for the given environment regarding the distributed
training and operations which are used. However, there are some

Parallelized Training of Deep NN DIDL ’18, December 10–11, 2018, Rennes, France

issues with dynamic input data for example with different input
image sizes or most tasks of natural language processing (NLP),
where it is common that sentences consist of different length. [10]
So there is the need to define a maximum input length and pad the
rest, which leads to performance drawbacks.

Dynamic Frameworks like PyTorch are better in these use cases
because of there natural dynamic characteristics. However, their
optimization strategies are not as good as for static graphs. Because
at the point of time when optimization is done only a partial graph
is known [11].

3.2 Type of Distributed Training
As mentioned above, there are different types of distributed train-
ing: model and data parallelism. If synchronous updates for data
parallelism are used, it is common to use a master-slave pattern.
One of the workers, the master, is responsible for computing model
updates and holding parameters. Others, the slaves, compute the
gradients. For example, Microsoft Cognitive Toolkit implements
this synchronous approach [3].

If asynchronous updates are used, there is a need for a PS ap-
proach which can be implemented in different ways. The above de-
scribed centralized implementation is implemented by most frame-
works, e.g., TensorFlow [1], Deeplearning4j [14], and CNTK [3].
Also, a decentralized approach exists, it is less common and is
implemented by MXNet [4].

3.3 Exemplary Frameworks
In the following sections, we give an overview of exemplary frame-
works, which fit our goal to evaluate the centralized and decen-
tralized parameter server approach experimentally. We choose the
most popular frameworks for the centralized approach, TensorFlow
and the only available with a decentralized implementation of PS,
MXNet [16].

3.3.1 TensorFlow. This deep learning framework was initially
implemented by Google Brain5 in 2011 and open sourced under
the Apache 2.0 license in November 2015. As mentioned above it
uses a static computation graph and implements the centralized
Parameter Server concept [1].

Figure 3 shows distributed data parallel training with two work-
ers and one PS. After the workers have calculated the gradients,
they use the push command of PS interface to send them. With
the blocking command pull, they wait for the correspondingly
updated parameters computed by the PS [7].

parameter server

worker1

dev0 dev1

worker2

dev0 dev1

worker0

dev0 dev1

push pull push push pullpull

Figure 3: Example with Parameter Server.

5Deep learning research team at Google: https://ai.google/research/teams/brain

3.3.2 MXNet. The deep learning framework was implemented
by DMLC (Distributed (Deep) Machine Learning Community)6 and
has been an Apache Incubator project since the beginning of 2017.
It is trying to combine the advantages of declarative programming,
which leads to a static computation graph, and imperative pro-
gramming, which produce a dynamic graph for instance for easier
debugging or other use cases in general. [4]

Figure 4 shows its decentralized concept for distributed data
parallel training, in contrast to TensorFlow, it implements the PS
concept by using a distributed KVStore. It also provides the same
Interface (push, pull) as PS, but uses a two-level structure. On each
worker machine, the KVStore first manage synchronization of this
machines devices and second synchronize with other KVStores [4].

worker4

dev0 dev1

worker3

dev0 dev1

worker2

dev0 dev1

worker0

dev0 dev1

worker1

dev0 dev1

Figure 4: Example with distributed KVStore.

4 EXPERIMENTAL EVALUATION OF
DISTRIBUTED TRAINING PERFORMANCE

Because of the importance of data parallel training in distributed
settings, we aim to show the performance and scalability of asyn-
chronous data parallel training with multiple worker nodes. Our
goal is to compare the centralized and decentralized PS approaches
experimentally. For this we use two neural networks, a CNN to
represent smaller and easier to compute networks and a RNNwhich
serves as a more complex case.

To visualize results, training timewith different amounts of work-
ers was measured and the corresponding throughput in training
samples per second was calculated. We replicated the whole data set
on each worker node, the corresponding calculation for n workers
shows equation 1.

throuдhputn =
no. examples ∗ epochs ∗ no. workers

traininд timen
(1)

To give information about the scalability of experiments we
calculated the speedup (equation 2), which indicates how much the
throughput with n workers could be increased.

speedupn =
throuдhputn
throuдhput1

(2)

With each configuration we did three experiments of two epochs
training to make sure there are no outliers. For experiments, the
most common frameworks which are implementing these concepts
were used: MXNet and TensorFlow.

6Group to collaborate on open-source machine learning projects: http://dmlc.ml

https://ai.google/research/teams/brain
http://dmlc.ml

DIDL ’18, December 10–11, 2018, Rennes, France Jäger et al.

Another interesting point is the usability of the frameworks.
Because MXNet’s distributed KVStore is part of each worker it
scales up with the number of workers, therefore no further work
is needed to find the best configuration. In contrast, the number
of parameter server for TensorFlow is variable and can affect its
performance. However, to find the best configuration can be hard.
Therefore, to get similarly low effort for the training setup, we used
for each TensorFlow experiment one dedicated parameter server.

In this section, we first specify the environment of evaluation
experiments, describe the neural networks and used technology
stack. In the second part, we show different experiments with asyn-
chronous data parallelism with TensorFlow and MXNet. Third, we
discuss the results.

4.1 Experimental Setup
For the experimental evaluation to show the scalability of the two
concepts centralized and decentralized PS for distributed asynchro-
nous data parallel training, we decided to choose a state-of-the-art
Kubernetes-based cloud technology stack. Because for most com-
panies or researchers in the area of deep learning it is cheaper to
use on-demand cloud infrastructure, as buying and managing their
hardware, especially with small teams and occasional use.

We used Googles’ managed Kubernetes Service7 for running
experiments. Up to 25 worker nodes of machine type n1-standard-1
were used. These consists of Intel Xeon E5 (Sandy Bridge) CPUs
which has a Base Frequency of 2.6 GHz.

To manage Kubernetes resources, we are used the so-called pack-
age manager Helm8. Helm allows to easily start, stop and scale the
training of test neural networks horizontally. The main feature is
its template engine which is used to dynamically produce a set of
worker nodes dependent on the value of a variable or argument.

An alternative for our implementation with Helm is Kubeflow9.
Kubeflow is a collection of tools to simplify the deployment of
machine learning workflows. Therefore it is not as lightweight and
at the time of this paper, it does not support MXNet for training.
These drawbacks are the reason for choosing our implementation.

To run experiments, a Docker container which can execute
Python training scripts is required.We used the Ubuntu 16.0410 base
image and built a TensorFlow container version 1.8.0 and Python
3.5.2, as well as one for MXNet version 1.3.0 and Python 2.7.12.

To simulate smaller neural networks which consist of a less
complex architecture we implemented the five-layered CNN LeNet-
5 [6]. It is implemented to do a classification of input images in 10
exclusive classes. For training, we used Zalando’s Fashion MNIST
Dataset [15], because it is a replacement for the well-known MNIST
dataset11 it also consists of 70.000 images. Each example is a 28x28
pixel gray-scale image associated with one of 10 classes.

For experiments with more complex neural networks, we used
the RNN introduced by Zaremba et al. [17]. Its goal is to predict the
next word in a textual context, also known as language modeling.
The RNN consists of two Long short-term memory (LSTM) layers
with 200 units per block and was unrolled for 20 steps. The network

7Google Kubernetes Engine: https://cloud.google.com/kubernetes-engine/
8Helm - The package manager for Kubernetes: https://helm.sh
9Kubeflow - The Machine Learning Toolkit for Kubernetes: https://www.kubeflow.org
10Docker Ubuntu Image: https://hub.docker.com/_/ubuntu/
11MNIST dataset: http://yann.lecun.com/exdb/mnist/

was trained on the Penn Tree Bank (PTB) dataset [8] we downloaded
from Tomas Mikolovs’ webpage12. It consists of about 1.000.000
words of English sentences and a vocabulary of 10.000.

For both, CNN and RNN, thewhole dataset is loaded intomemory
before training starts. Therefore there is no time needed for loading
data from disk which must be considered.

4.2 Experiments and Results
The Goal of the experiments is to analyze the behavior of Tensor-
Flow and MXNet and the corresponding concepts with an increas-
ing number of worker nodes. To avoid an experimental setup with
an extremely large amount of worker machines, an alternative ap-
proach was used. Training with a smaller batch size leads to higher
synchronization effort, and therefore the frameworks scalability
have to be better to prevent a performance drop.

1024 512 32
batch size

0

200

400

600

800

1000

th
ro

u
g
h
p
u
t

(i
m

a
g
e
s/

s)

1 worker

2 worker

Figure 5: Comparison of MXNet experiments with different
batch sizes and worker nodes.

To show the correctness of the above mentioned alternative
approach, figure 5 compares the results of MXNet CNN experiments
with 1024, 512 and 32 test images per batch with one and two
workers. As expected, it shows that the increasing performance has
about the same factor as the number of workers. Also, a slightly
decreasing throughput at smaller batch sizes can be noticed.

1 2 5 10
number of worker

1000

2000

3000

4000

5000

th
ro

u
g
h
p
u
t

(i
m

a
g
e
s/

s)

MXNet batch size: 32

MXNet batch size: 1024

Figure 6: Demonstration of the alternative approach, the
smaller batch size, the less efficient its scalability.

12http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

https://cloud.google.com/kubernetes-engine/
https://helm.sh
https://www.kubeflow.org
https://hub.docker.com/_/ubuntu/
http://yann.lecun.com/exdb/mnist/
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

Parallelized Training of Deep NN DIDL ’18, December 10–11, 2018, Rennes, France

Figure 6 shows that the above mentioned approach works. With
a batch size of 1024 images, MXNet can scale linearly up to 10
workers. However, if the batch size ismuch smaller the computation-
communication ratio is lower, which leads to less efficiency in terms
of the framework’s throughput.

4.2.1 Convolutional NN. We did different experiments with an
increasing number of worker nodes for both frameworks. Figure 7
shows the results.

1 2 5 10 25
number of worker

0

2000

4000

6000

8000

10000

th
ro

u
g
h
p
u
t

(i
m

a
g
e
s/

s)

MXNet batch size: 64

MXNet batch size: 256

MXNet batch size: 1024

1 2 5 10 25
number of worker

2000

4000

6000

8000

10000

th
ro

u
g
h
p
u
t

(i
m

a
g
e
s/

s)

TF batch size: 64

TF batch size: 256

TF batch size: 1024

Figure 7: Experimental results for CNN with MXNet (top)
and TensorFlow (bottom)

First, it is shown that MXNet can scale linearly up to 10 workers
with the given configuration, in contrast to TensorFlow which only
scales linearly up to 5 workers.

Second, with 10 or more workers MXNets’ throughput is for each
experiment higher than TensorFlows’, especially for small batches.
With a batch size of 64 images, TensorFlow could only achieve a
scale up efficiency of about 32%. In contrast, MXNet achieves about
69%.

Figure 8 compares the results described above. It shows Tensor-
Flows’ and MXNets’ speedup each with a batch size of 64 and 1024.
Corresponding to MXNets’ higher throughput, its speedup is higher
too. The gap increases with an increasing number of worker nodes
and smaller batches. With a batch size of 64 and 25 worker nodes,
MXNets’ speedup is more than two times higher as TensorFlows’.
Another point to mention is the different performance drop from
1024 to 64 batches. For MXNet this is only about 5%. For TensorFlow
it is about 45%.

4.2.2 Recurrent NN. Figure 9 and 10 show the results of RNN
experiments with respect to throughput and speedup. Similar to the

1 2 5 10 25
number of worker

0

5

10

15

20

25

sp
e
e
d
u
p

ideal

TF batch size 64

TF batch size 1024

MXNet batch size 64

MXNet batch size 1024

Figure 8: Comparison of speedup for CNN

CNN experiments both frameworks can scale up with bigger batch
size more efficiently. However, in contrast for RNNMXNet achieves
for each configuration higher throughput as figure 9 shows.

1 2 5 10 15 20 25
number of worker

0

2000

4000

6000

8000

th
ro

u
g
h
p
u
t

(w
o
rd

s/
s)

TF batch size: 5

TF batch size: 20

MXNet batch size: 5

MXNet batch size: 20

Figure 9: Experimental results for RNN

As mentioned, MXNets’ throughput is higher, however as figure
10 shows for batch size 20 TensorFlows’ speedup is better. It also
shows the trend that with more workers MXNet can decrease this
gap. For batch size 5 it is the other way around, the more workers
are used the better is MXNets’ speed in comparison to TensorFlow.

1 2 5 10 15 20 25
number of worker

0

5

10

15

20

25

sp
e
e
d
u
p

ideal

TF batch size 5

TF batch size 20

MXNet batch size 5

MXNet batch size 20

Figure 10: Comparison of speedup for RNN

For batch size 20 MXNet can achieve an efficiency of 77% with
10 workers and 62% with 15. For batch size 5 it is only 57% and

DIDL ’18, December 10–11, 2018, Rennes, France Jäger et al.

43%. In contrast, TensorFlow is much better with batch size 20 its
efficiency is 95% and 70%, but for batch size 5 it only can achieve
an efficiency of 52% and 40%. However, consider MXNet’s higher
throughput. For both, it is not practical to use more worker nodes.

To summarize the experiments, for the CNN experiments Ten-
sorFlows’ throughput with few workers (1 to 5) is slightly higher
than MXNets’. For increasing batch sizes this gap gets smaller. This
trend, the more complex or bigger regarding calculations the NN
becomes, the higher MXNet throughput becomes, could also be
validated with the RNN experiments. There, MXNet could achieve
for each configuration higher throughput and with bigger batch
sizes the distance to TensorFlow increases.

4.3 Discussion
Only in a few cases, with few worker nodes and less complex NN,
it is preferable regarding training performance to use TensorFlow.
Otherwise, it is better to use MXNets’ distributed KVStore, espe-
cially with 5 and more worker nodes or more complex NN. To be
fair, TensorFlows’ PS could be explicitly scaled which has to be
implemented and is out of scope in this paper.

MXNets’ approach does not only scale better in our training en-
vironment, but it also requires less and, above all, less complicated
code. For instance, there is no need to implement different training
scripts or, at least, a generic script and use different parameteriza-
tion for each worker.

For MXNet training is conducted by a so-called scheduler, which
starts all worker processes on nodes and initializes them. E.g. it as-
signs worker numbers and distributes IP-addresses to them. In con-
trast, TensorFlow requires to start its worker process for each node.
In an automated environment, like our Kubernetes- andHelm-based
technology stack, both approaches are good. However, without any
automation MXNet is more convenient.

To wrap up our experiences, MXNet is a good choice, especially
when dealing with more complex NN. It showed better scalability
and mostly higher throughput. Moreover we found the code to be
less complicated and the configuration to be easier.

5 RELATEDWORK
Experiments with a distributed configuration based on GPUs with
up to 4 nodes were done by Zhu et al. [18]. They focused on cre-
ating a new benchmark to analyze frameworks on the major deep
learning domains. However, similar to our results, they showed
MXNets’ higher throughput with ResNet-50, as well as the increased
performance with bigger batches.

Another benchmark evaluated distributed training on single ma-
chine configurations with CPU, multiple CPUs, GPU and multiple
GPUs [13]. Their GPU and multi GPU results are similar to ours.
They found that MXNets’ scalability in the most cases beats Tensor-
Flows’. Their CPU-based training results show, in contrast to ours,
for less complex NN that MXNet can achieve better performance
than TensorFlow. For more complex NN, like ResNet-50, it is the
other way around. A possible reason might relate to their older
framework versions (TensorFlow: 0.11, MXNet: 0.7.0).

In contrast to our focus on asynchronous data parallel training a
benchmark by Shi et al. aimed at synchronous data parallel training
[12].

All three studies above [12, 13, 18] focus on bare metal setups.We
used a more practical approach with a state-of-the-art Kubernetes-
based cloud technology stack.

6 CONCLUSION
In this paper, we compared the two common concepts for asyn-
chronous data parallel training, Parameter Server and distributed
KVStore. For the experimental evaluation, we used a state-of-the-art
Kubernetes-based cloud technology stack with up to 25 workers of
the machine type n1-standard-1 of Googles’ Kubernetes Engine. For
experiments, the well-known frameworks TensorFlow and MXNet
were used to measure their throughput with an implementation
of a CNN and RNN. Our experimental results show that especially
for a low computation-communication ratio MXNet can achieve
higher throughput and therefore mostly better speedup.

For future work we plan experiments with an optimized Tensor-
Flow setup regarding the number of used parameter server. Second,
it would be interesting to see their performance if GPU cluster
were used. Moreover, we plan to use further state-of-the-art neural
networks.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, et al. 2016. Tensorflow: a system for

large-scale machine learning. In OSDI, Vol. 16. 265–283.
[2] Jianmin Chen, Xinghao Pan, Rajat Monga, et al. 2016. Revisiting distributed

synchronous SGD. arXiv preprint arXiv:1604.00981 (2016).
[3] Kai Chen and Qiang Huo. 2016. Scalable training of deep learning machines by

incremental block training with intra-block parallel optimization and blockwise
model-update filtering. In Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE, 5880–5884.

[4] Tianqi Chen, Mu Li, Yutian Li, et al. 2015. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274 (2015).

[5] W Daniel Hillis and Guy L Steele Jr. 1986. Data parallel algorithms. Commun.
ACM 29, 12 (1986), 1170–1183.

[6] Yann LeCun, Léon Bottou, Yoshua Bengio, et al. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[7] Mu Li, David G Andersen, Jun Woo Park, et al. 2014. Scaling Distributed Machine
Learning with the Parameter Server. In OSDI, Vol. 14. 583–598.

[8] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
linguistics 19, 2 (1993), 313–330.

[9] Ruben Mayer, Christian Mayer, and Larissa Laich. 2017. The Tensorflow Parti-
tioning and Scheduling Problem: It’s the Critical Path!. In Proceedings of the 1st
Workshop on Distributed Infrastructures for Deep Learning (DIDL ’17). ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/3154842.3154843

[10] Graham Neubig, Chris Dyer, Yoav Goldberg, et al. 2017. Dynet: The dynamic
neural network toolkit. arXiv preprint arXiv:1701.03980 (2017).

[11] Adam Paszke, Sam Gross, Soumith Chintala, et al. 2017. Automatic differentiation
in pytorch. (2017).

[12] Shaohuai Shi and Xiaowen Chu. 2017. Performance Modeling and Evaluation of
Distributed Deep Learning Frameworks on GPUs. arXiv preprint arXiv:1711.05979
(2017).

[13] Shaohuai Shi, QiangWang, Pengfei Xu, et al. 2016. Benchmarking state-of-the-art
deep learning software tools. In Cloud Computing and Big Data (CCBD), 2016 7th
International Conference on. IEEE, 99–104.

[14] Deeplearning4j Development Team. 2018. Deeplearning4j: Open-source dis-
tributed deep learning for the JVM, Apache Software Foundation License 2.0.
http://deeplearning4j.org

[15] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[16] Jan Zacharias, Michael Barz, and Daniel Sonntag. 2018. A Survey on Deep
Learning Toolkits and Libraries for Intelligent User Interfaces. arXiv preprint
arXiv:1803.04818 (2018).

[17] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

[18] Hongyu Zhu, Bojian Zheng, Bianca Schroeder, et al. 2018. DNN-Train: Bench-
marking and Analyzing DNN Training. In SysML 2018.

https://doi.org/10.1145/3154842.3154843
http://deeplearning4j.org

	Abstract
	1 Introduction
	2 Concepts of Distributed Training
	2.1 Model Parallelism
	2.2 Data Parallelism

	3 Comparison of Frameworks
	3.1 Static and Dynamic Graphs
	3.2 Type of Distributed Training
	3.3 Exemplary Frameworks

	4 Experimental Evaluation of Distributed Training Performance
	4.1 Experimental Setup
	4.2 Experiments and Results
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

